
How (Not) to Use OAuth
in 2024
Daniel Fett



About me: Daniel Fett

● Coauthor of the OAuth Security Best Current Practice RFC

● Standardization activities: IETF OAuth, OpenID Foundation

● PhD on web protocol security (formal security analysis)

● Product owner in the German EUDI Wallet project @ SPRIN-D



In this Talk

What is OAuth 2.0? Quick recap!

Security Challenges for OAuth

The three most important recommendations in the Security BCP

… and why you don’t have to remember them



Who is familiar with OAuth?
OAuth 2.0



OAuth is a standard
for federated authorization



Authorization 

Authorization Server
& Resource Server

User Client

Banking
App

Online
Banking
Account

authorizes to access

Authentication 

Relying PartyUser

authenticates to using identity from

Identity Provider



Authorization 

Authorization Server
& Resource Server

User Client

Banking
App

Online
Banking
Account

authorizes to access

Authentication 

Relying PartyUser

authenticates to using identity from

Identity Provider



OAuth & friends in the Wild

Banking

Apple

Facebook

Google



OAuth 2.0!

e-health
open banking

open insurance

open consumer data

digital identity ecosystems

e-signing

e-governmentopen finance



AS/RSUser

Implicit Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return#access_token=bar42&… 

Client

Give access 
to bank 

account?

Bank

POST /connect

Authorization
Request

Authorization
Response

Banking
App

Holy Grail



AS/RSUser

Implicit Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return#access_token=bar42&… 

Use access_token (JS Browser Apps)

Send access_token

Use access_token

Client

Give access 
to bank 

account?

Bank

POST /connect

or

Authorization
Request

Authorization
Response

Banking
App



User

Authorization Code Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return?code=foo42&… 

POST /token, code=foo42

Use access_token

GET …?code=foo42&…

Client

Send access_token

POST /connect

Banking
App

AS/RS

Give access 
to bank 

account?

Bank

Holy Grail
in Backend only

Authorization
Request

Authorization
Response



Twelve Years after RFC6749:

Security Challenges for OAuth



Challenge 1: Implementation Flaws

● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ … 

● Clients worse than authorization/resource servers

● [Li et al., 2014]
60 chinese clients, more than half vulnerable to 
CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle state (CSRF 
protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000 vulnerable 
to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one or more 
attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and other 
OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or more 
attacks



New Use Cases require a very high level of security

● Open Banking: Account access, payments, wire transfers

● eHealth: Access to health data

● eSigning: Legally binding digital signatures

● Wallets (EU Digital Identity Wallets, eIDAS 2.0): 

Identification on Level of Assurance High -> Kristina’s talk

Far beyond the scope of the original security threat model!

Challenge 2: High-Stakes Environments



Challenge 3: Dynamic and Complex Setups

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider



OAuth Provider B

Challenge 3: Dynamic and Complex Setups

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client

Today:

Not all entities 
are trustworthy!



OAuth Provider B

Challenge 3: Dynamic and Complex Setups

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client

Today:

Not all entities 
are trustworthy!

AS M
ix-

Up A
tta

ck
! 



How to address these
challenges?



OAuth 2.0 Security Best Current Practice RFC

● Under development at the IETF
● Refined and enhanced security guidance for OAuth 2.0 implementers
● Complements existing security guidance in RFCs 6749, 6750, and 6819

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Input from practice and formal analysis



The Three Most Important

Recommendations
in the OAuth Security BCP



User

① Do not use the OAuth Implicit Grant any longer!

GET /authorize?… 

Redirect to Authorization Server

AS/RS

User authenticates & consents

Redirect to rp.com/authok#access_token=foo23&… 

Use access_token (Single-Page Apps)

Access token available in web application

Send access_token (Non-SPA)

Use access_token

Threat: Access token 
leakage from web 
application (XSS, browser 
history, proxies, operating 
systems, ...) Threat: Access token replay!

Threat: Access token injection!

Client



The Implicit Grant ...

● sends powerful and potentially long-lived tokens through the browser,
● lacks features for sender-constraining access tokens,
● provides no protection against access token replay and injection, and
● provides no defense in depth against XSS, URL leaks, etc.!

Why is Implicit even in RFC6749?

No Cross-Origin Resource Sharing in 2012!
⇒ No way of (easily) using OAuth in SPAs.

⇒ Not needed in 2024!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]”

“Clients SHOULD instead use the response type code 
(aka authorization code grant type) [...]”



AS/RSUser

Use the Auth Code Grant with PKCE & DPoP/mTLS!

GET /authorize?code_challenge=sha256xyz&...

Redirect to Authorization Server

...

Redirect to rp.com/authok?code=bar42&... 

POST /token, code=bar42
 &code_verifier=xyz...

Use access_token

Send code

Send access_token
Mitigation: Sender-Constrained Access Token
Via mutual TLS or DPoP.

Mitigation: Single-use Code
Double use leads to access token invalidation!

Client

Mitigation: Proof Key for Code Exchange (PKCE)
- Code only useful with code_verifier 
- Code replay/injection prevented by PKCE.



Authorization Code Grant with PKCE & DPoP/mTLS … 

● protects against code and token replay and injection,
● supports sender-constraining of access tokens,
● protects against CSRF better than state does,
● provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]”

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”



② Stop Redirects Gone Wild!

● Enforce exact redirect URI matching
○ Simpler to implement on AS side
○ Adds protection layer against open redirection

● Clients MUST avoid open redirectors!
○ Use whitelisting of target URLs 
○ or authenticate redirection request



③ Limit Privileges of Access Tokens!

● Sender-constraining (mTLS or DPoP)
● Receiver-constraining (only valid for certain RS)
● Reduce scope and lifetime and use refresh tokens - defense in depth!



But wait, there’s more…

The treasure trove: Section 2 of draft-ietf-oauth-security-topics!



I’m confused…

Should I Even Use OAuth?



Absolutely!

● Standards are good
○ Battle-proven libraries
○ Interoperability

● Years of experience, dozens of security analyses
● Custom-built solutions prone to repeat even the most basic vulnerabilities 
● Protection against strong attackers
● Formal proof of security
● But: 

○ Know your threat model
○ Read the security advice, including the BCP draft
○ Implement the latest security features

… or use OAuth 2.1 / FAPI 2.0



OpenID Connect

OAuth 2.0OAuth 2.1
= OAuth 2.0

 + Security BCP

OpenID FAPI 2.0
Interop. + Security 

Profile of OAuth 2.0

What you need 
in Open Banking
and elsewhere…

Interoperability Authentication

Conformance
Tests

AuthorizationSecurity/ 
Hardening



FAPI?

Financial API



FAPI?

Financial API

Financial API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile

FAPI



FAPI!

Security, interoperability, and feature profile for OAuth 2.0

Implements all the security recommendations from the OAuth Security BCP

Usable for all APIs, including high-security applications.

FAPI 2.0: Latest version



Follow up

danielfett.de/publications
List of Drafts/Specifications

oauth.secworkshop.events 
OAuth Security Workshop, 

February 26-28, 2025, 
Reykjavik

https://danielfett.de/publications/
https://oauth.secworkshop.events/osw2025


danielfett.de/publications
List of Drafts/Specifications,

Talk on FAPI 2.0

oauth.secworkshop.events 
OAuth Security Workshop, 

February 26-28, 2025, Reykjavik

Daniel Fett
SPRIN-D
mail@danielfett.de Thank you!

https://danielfett.de/publications/
https://oauth.secworkshop.events/osw2025

